
10/19/23

1

Getting to grips with JSON
in the Database

Presented on 19th October 2023
at

HrOUG 2023
Rovinj, Croatia

by
Niall Mc Phillips - Long Acre sàrl

niall.mcphillips@longacre.ch
@Niall_McP

1

2

10/19/23

2

3

← 🪂 Many Years of Cloud Experience
Cloud Early Adopter

🌩

4

10/19/23

3

About me: Niall Mc Phillips

Owner - Long Acre sàrl
Co-founder and Director - Stephenson and Associates (founded 1995)
Irish 🇮🇪 / 🇨🇭 Swiss Living in Geneva, Switzerland.

• Oracle ACE Pro ♠
• Symposium42 member
• Using Oracle database as a Developer and DBA for >30 years
• Developing web applications with Oracle DB since 1995
• Developing with APEX since 2005
• Organizer of the original Swiss APEX Meetup group

@Niall_McP
niall.mcphillips@longacre.ch

5

6

10/19/23

4

3 membership tiers

Connect: @oracleaceFacebook.com/OracleACEsaceprogram_ww@oracle.com

500+ technical experts
helping peers globally

The Oracle ACE Program recognizes and
rewards community members for their
technical and community contributions to the
Oracle community

Nominate
yourself or someone you know:

ace.oracle.com/nominateFor more details on Oracle ACE Program:
ace.oracle.com

7

Created by the community, to support the community

Sharing of reliable knowledge
Supporting the various user groups and individuals

https://sym42.org/@sym_42

8

http://acenomination.oracle.com/
bit.ly/OracleACEProgram
https://sym42.org/

10/19/23

5

Relational – very-condensed history
• 1970 - First defined by E.F.Codd of IBM and was published in

the IBM Systems Journal

• 1979 - a start-up company called “Relational Software Inc.”

(RSI) released a product that they named “Oracle”
Interesting factoid, the first Oracle release was “version 2” – because no

one would want to buy version 1

9

Relational - Normalisation
Let's start with a list of data representing short-term apartment rentals

Apartments

Address Description Landlord Landlord
phone

Landlord
e-mail

Currency Price /
week

Amenities

21 Rue du Saut blah, blah D. Jepp 022 678
4322

d.jepp@ap
t.ch

CHF 980 Wifi
Kitchen
Balcony

62 Rue du Pirate blah, blah D. Jepp 022 678
4322

d.jepp@ap
t.ch

CHF 1480 Wifi
Kitchen
Garden

42 Rue des
Caraïbes

blah, blah M. Curphy 01 78 43
22 56

m.curphy
@xyz.ch

CHF 520 Wifi
Kitchenette

10

10/19/23

6

Relational – 1st Normal Form
Multiple values not allowed in columns

Apartments

Address Description Landlord Landlord
phone

Landlord
e-mail

Currency Price /
week

Amenities

21 Rue du Saut blah, blah D. Jepp 022 678
4322

d.jepp@ap
t.ch

CHF 980 Wifi,
Kitchen,
Balcony

62 Rue du Pirate blah, blah D. Jepp 022 678
4322

d.jepp@ap
t.ch

CHF 1480 Wifi,
Kitchen,
Garden

42 Rue des
Caraïbes

blah, blah M. Curphy 01 78 43
22 56

m.curphy
@xyz.ch

CHF 520 Wifi

11

Relational – 1st Normal Form
Multiple values not allowed in columns

Apartments
Address Descriptio

n
Landlord Landlord

phone
Landlord
e-mail

Currency Price /
week

21 Rue du Saut blah, blah D. Jepp 022 678
4322

d.jepp@a
pt.ch

CHF 980

62 Rue du Pirate blah, blah D. Jepp 022 678
4322

d.jepp@a
pt.ch

CHF 1480

42 Rue des
Caraïbes

blah, blah M. Curphy 01 78 43
22 56

m.curphy
@xyz.ch

CHF 520

Address Amenity
21 Rue du Saut Wifi

21 Rue du Saut Kitchen

21 Rue du Saut Balcony

62 Rue du Pirate Wifi

62 Rue du Pirate Kitchen

62 Rue du Pirate Garden

42 Rue des Caraïbes Wifi

12

10/19/23

7

Relational – 2nd Normal Form
2nd Normal Form can be achieved by adding a single-value primary key

Apartments
ID Address Descript

ion
Landlor
d

Landlor
d phone

Landlor
d e-mail

Currenc
y

Price /
week

1 21 Rue du
Saut

blah,
blah

D. Jepp 022 678
4322

d.jepp@
apt.ch

CHF 980

2 62 Rue du
Pirate

blah,
blah

D. Jepp 022 678
4322

d.jepp@
apt.ch

CHF 1480

3 42 Rue des
Caraïbes

blah,
blah

M.
Curphy

01 78
43 22
56

m.curph
y@xyz.
ch

CHF 520

ID Address Amenit
y

1 21 Rue du
Saut

Wifi

2 21 Rue du
Saut

Kitche
n

3 21 Rue du
Saut

Balcon
y

4 62 Rue du
Pirate

Wifi

5 62 Rue du
Pirate

Kitche
n

6 62 Rue du
Pirate

Garde
n

7 42 Rue des
Caraïbes

Wifi13

Relational – 3rd Normal Form
Remove redundancies

Apartments
ID Address Description Landlord ID Curr

ency
Price /
week

1 21 Rue du Saut blah, blah 1 CHF 980

2 62 Rue du Pirate blah, blah 1 CHF 1480

3 42 Rue des Caraïbes blah, blah 2 CHF 520

Apartment
Amenities
Apartment
ID

Amenity
ID

1 1

1 2

1 3

2 1

2 2

2 4

3 1

Landlords
ID Name Phone e-mail

1 D. Jepp 022 678 4322 d.jepp@ap
t.ch

2 M.
Curphy

01 78 43 22 56 m.curphy
@xyz.ch

Amenities
ID Amenity
1 Wifi

2 Kitchen

3 Balcony

4 Garden

14

10/19/23

8

Relational – Normalisation

We could now construct SQL statements joining tables to

answer questions such as :

• Which apartments have kitchens and how much are they?

• Which apartments are operated by D. Jepp and what are

their amenities?

• etc.

15

Relational – Major Benefits

• Data Integrity is ensured

• Structure is explicitly defined outside of the data

• Reliability, tried and tested approaches

• Easily-defined transactions

16

10/19/23

9

Relational – Some Drawbacks

• Lack of flexibility
• Potential for Complexity

17

JSON

• Dates from the early-2000's by Douglas Crockford
• First standardized in 2013 (ECMA-404)

• 2017 – ISO/IEC standard (ISO/IEC 21778:2017)

• Independent of underlying technologies
• Wide adoption in the development community

18

10/19/23

10

JSON

Let's take a look at our short-stay apartment
list

19

A JSON object for one apartment
{
"id":1,
"address":"21 Rue du Saut",
"description":"blah, blah",
"weeklyPrice":"980",
"currency":"CHF",
"landlord":{”name":”D.Jepp",

"phone":"022 678 4322",

"email":"d.jepp@apt.ch"},

"amenities":["Wifi",
"Kitchen",
"Balcony"]

}

20

10/19/23

11

JSON

«Great - But…»
let's look at this in a different way

21

A JSON object for one landlord
{
"id":"1",
"name":"D.Jepp",

"phone":"022 678 4322",
"email": "d.jepp@apt.ch",
"apartments":[

{"id":"1",
"address":"21 Rue du Saut",
"description":"blah, blah",

"weeklyPrice":"980",
"currency":"CHF",
"amenities":["Wifi",

"Kitchen",
"Balcony"]

},

{"id":”2",
"address":"62 Rue du Pirate",
"description":"blah, blah",

"weeklyPrice":"1480",
"currency":"CHF",
"amenities":["Wifi",
"Kitchen",
"Garden"]
}

]
}

22

10/19/23

12

Adding reviews

Let's add reviews from people that have stayed in the

apartments

• Reviewer ID

• Reviewer Name

• Stars Given

• Review Text

23

Adding reviews - Relational

Data Model changes – add at least 2 tables
• a table of Reviewers with ID and Name

• a table of Reviews

Reviewers
ID Name
1 James Plunkett
2 James Connolly

Reviews
APT ID Reviewer ID Stars Review Text
1 1 5 Great apartment!
1 2 4 Nice apartment, but

24

10/19/23

13

Adding reviews - JSON

• Add an array of reviews
{
"id":1,

"address":"21 Rue du Saut",
…
,
"reviews":[{"reviewerId":1,

"name":"James Plunkett",

"stars":5,
"text":"Great apartment!”},

{"reviewerId":2,
"name","James Connolly",
"stars":4,

"text":"Nice Apartment, but"}
]

}
25

End of philosophical discussion – enough for now

Now let’s get our hands on the good stuff...

38

10/19/23

14

What we’re going to look at now

• Defining a JSON column in a table

39

What we’re going to look at now

• Defining a JSON column in a table
• Inserting JSON in different ways

40

10/19/23

15

What we’re going to look at now

• Defining a JSON column in a table
• Inserting JSON in different ways
• Querying JSON in multiple ways

• Dot notation

41

What we’re going to look at now

• Defining a JSON column in a table
• Inserting JSON in different ways
• Querying JSON in multiple ways

• Dot notation
• Projecting JSON as relational

42

10/19/23

16

What we’re going to look at now

• Defining a JSON column in a table
• Inserting JSON in different ways
• Querying JSON in multiple ways

• Dot notation
• Projecting JSON as relational

• Updating JSON

43

What we’re going to look at now

• Defining a JSON column in a table
• Inserting JSON in different ways
• Querying JSON in multiple ways

• Dot notation
• Projecting JSON as relational

• Updating JSON
• Indexing JSON

44

10/19/23

17

Defining a JSON column – 19c

create table nobel_prizes
(year number,
category_id number,
prize_details clob);

alter table nobel_prizes add constraint
ck_laureates_json

check (prize_details IS JSON);

45

Defining a JSON column – 21c+

create table nobel_prizes
(year number,
category_id number,
prize_details json);

46

10/19/23

18

Inserting JSON
insert into nobel_prizes (year, category_id, prize_details)
values (2022,7,'{ "year": "2022",

"categoryId": "7",
"categoryName": "APEX",
"details":

[{"id" : "2000",
"firstname" : "Developer",
"surname" : "Community",
"motivation" : "for the development of great applications",
"shareFraction" : ”1” }

]
}');

47

Inserting JSON using JSON_OBJECT
insert into nobel_prizes (year, category_id, prize_details)
select 2022, 7,

json_object
(key 'year' is 2022,
key 'categoryId' is 7,
key 'categoryName' is 'APEX',
key 'details' is
json_arrayagg

(json_object(key 'id' is d.id,
key 'firstname’ is d.firstname,
key 'surname’ is d.surname,
key 'motivation’ is d.motivation,
key 'shareFraction' is d.shareFraction)

returning clob)
)

From ...) d;

48

10/19/23

19

Demo time!

49

Querying JSON –
Dot notation

select
p.year,
p.category_id,
json_query(p.prize_details, '$.details’

returning varchar2(4000) pretty) laureates
from nobel_prizes p;

50

10/19/23

20

Querying JSON –
Dot notation

select p.prize_details.year,
p.prize_details.categoryName,
p.prize_details.details[0].firstname as firstname1,
p.prize_details.details[0].surname as surname1,
p.prize_details.details[1].firstname as firstname2,
p.prize_details.details[1].surname as surname2

from nobel_prizes p;

51

Querying JSON –
All array elements as a JSON array
select
p.prize_details.year.string() as year,
p.prize_details.categoryName.string()

as category,
p.prize_details.details[*].surname

as laureates
from nobel_prizes p;

52

10/19/23

21

Querying JSON –
Using JSON_TABLE to project as multiple rows
select p.prize_details.year.string() as year,

p.prize_details.categoryName.string() as category,
j.firstname ||' '||j.surname as name,
j.share_fraction,
j.motivation as motivation

from nobel_prizes p
join categories c on (c.category_id = p.category_id)
cross join json_table(p.prize_details, '$.details[*]'

columns (firstname varchar2(30) path '$.firstname',
surname varchar2(30) path '$.surname',
share_fraction number path '$.shareFraction',
motivation varchar2(500) path '$.motivation')) j;

53

Updating JSON – JSON_TRANSFORM
changing a value

update nobel_prizes p
set p.prize_details

= json_transform
(p.prize_details,
set '$.categoryName’ ='APEKS')

where p.year=2022
and p.category_id = 7;

55

10/19/23

22

Updating JSON – JSON_TRANSFORM
removing an array element

update nobel_prizes p
set p.prize_details

= json_transform
(p.prize_details,
remove '$.details[*]?(@.id=="2000")')

where p.category_id = 7;

56

Updating JSON – JSON_TRANSFORM
adding an array element

update nobel_prizes p
set p.prize_details

= json_transform (p.prize_details,
append '$.details' =
json_object (key 'id' is '2000’,

key 'firstname' is 'Developer’,
key 'surname' is 'Community’,
key 'motivation' is great applications’,
key 'shareFraction' is 2)
)

where p.category_id = 7;

57

10/19/23

23

Indexing JSON

• Function indexes for simple cases
• Multivalue indexes for array elements
• Search Index for other searches

See Search indexes for JSON – Roger Ford, Oracle - 23rd Nov 2021

59

Indexing JSON - Simple cases
• Function indexes for simple cases

create index ind_nobel_prizes$1
on nobel_prizes

(prize_details.year.string());

then
select * from nobel_prizes p
where p.prize_details.year.string() = '1916';

60

https://blogs.oracle.com/database/post/search-indexes-for-json

10/19/23

24

Indexing JSON - Multivalue indexes
For array elements:
create multivalue index ind_apartments$2
on nobel_prizes p
(p.prize_details.details[*].firstname.string())
;

then...
select p.* from nobel_prizes p
where json_exists(p.prize_details,

'$.details?(@.firstname == "Annie")');

61

Indexing JSON – Search Indexes
For textual searches (similar to Oracle Text):
create search index ind_nobel_prizes$3
on nobel_prizes (prize_details) for json;

then...
select p.* from nobel_prizes p
where json_textcontains(p.prize_details,

'$.details.motivation’,
'novel');

62

10/19/23

25

JSON in the DB Use Cases – some examples
• Equipment certification – the certificates should reflect only

the certificate information issued at the date of issue despite
any changes to the data structure since certification.

• Auditing – allows data changes to be tracked over an
evolving data model

• Fast-moving, “temporary” data – i.e. this month's “special
pick”

63

23c

64

10/19/23

26

23c - JSON Relational Duality

65

23c - JSON Relational Duality

66

10/19/23

27

23c - Creating a JSON Relational Duality view
What we are about to see

1) Creation of a JSON Relational Duality view of prizes and their
laureates.

2) Creation of a JSON Relational Duality view of laureates and their
prizes (i.e. a very different JSON to the previous one)

3) Updating of one of the views and viewing the updates via both views
and directly on the relational tables.

4) ETAGs and their use for optimistic locking.

67

23c - Creating a JSON Relational Duality view

For this example, we have 3 relational tables

• REL_LAUREATES
• REL_PRIZE_LAUREATES
• REL_PRIZES

68

10/19/23

28

23c - Creating a JSON Relational Duality view
Simple model with primary keys and foreign keys.

69

23c - Creating a JSON Relational Duality view of
Prizes and their laureates

create or replace json relational duality view dv_nobel_prizes as
select json {'prizeId' : p.prize_id,

'year' : p.year,
'category' : p.category_name,
'laureates' :
[select json {'prizeLaureateId' : pl.prize_laureate_id,

...
from rel_prizes p with insert update delete;

70

10/19/23

29

23c - Creating a different JSON Relational Duality
view of Laureates and their Prizes
create or replace json relational duality view dv_nobel_prizes2
as
select json {'laureateId' : l.laureate_id,

'firstname' : l.firstname,
'surname' : l.surname,
'prizes' :
[select json {'prizeLaureateId' : pl.prize_laureate_id,

...
rel_laureates l with insert update delete;

71

23c - Updating a JSON Relational Duality view
• JSON Updates

• Relational update

• ETAGs

72

10/19/23

30

Relational JSON Duality 23c – The DEMO

73

JSON in Oracle – Multiple avenues
• Oracle SODA – accepts JSON from multiple environments

• Java, Node.js, REST, C, Python, PL/SQL

• Oracle's new MongoDB Drivers and Tools

• REST and ORDS

• SQL and PL/SQL

74

10/19/23

31

Advantages of Relational / JSON Hybrid models
• Less tables, more flexibility
• Very infrequently used attributes don’t need to be

modelled as stringently
• Modern approach that non-Oracle developers can

quickly identify with and adopt

78

Challenges of Hybrid models
• With more flexibility - attention needs to be paid

to ensuring data integrity.

79

10/19/23

32

Challenges of Hybrid models
• With more flexibility - attention needs to be paid to

ensuring data integrity.

• Finding the right balance between relational and
JSON for your data, your application and your
environment.

80

Challenges of Hybrid models
• With more flexibility - attention needs to be paid to

ensuring data integrity.

• Finding the right balance between relational and
JSON for your data, your application and your
environment.

• 23c JSON Relational Duality has addressed
these challenges.

81

10/19/23

33

JSON in the Database
• JSON in the Database offers new opportunities and

techniques for dealing with data

• JSON Relational Duality is a game changer

• JSON in the Database is here to stay

• Embrace it and add it to our toolkit

82

83

