
APEX CI/CD from the trenches













What is CI/CD?

CI/CD stands for Continuous Integration and Continuous Deployment 
(or Continuous Delivery). It's a software development approach that 
emphasizes frequent integration of code changes into a shared 
repository (Continuous Integration), followed by automated testing 
and deployment processes to ensure that changes can be reliably 
and swiftly delivered to production environments (Continuous 
Deployment/Delivery). This approach helps to streamline 
development, improve code quality, and accelerate the delivery of 
software updates, ultimately leading to more efficient and reliable 
software development cycles.

Let’s ask ChatGPT



Why do we need CI/CD?

• fast resolving of defects


• deliver small blocks


• small changes = less risk



What do we need?

• Git


• Visual Studio Code


• SQL Developer (PL/SQL 
Developer / TOAD)


• SQLcl (including Liquibase)



GitLab central repo

GitLab local repo

clone / pull

branch

branch commit

push

branch

merge



CLONE



CLONE to local

• One or more Git repositories


• One common


• Folder structure (standardize!)





PULL



PULL to refresh

• Sync your local repo with central







Liquibase

• changelog


• changeset


• every DB object


• APEX applications


• ORDS modules


• repeatable



BRANCH



Code

• APEX



Code

• APEX


• script to export APEX (split, YAML, Liquibase)

lb generate-apex-object -applicationid &app_id 

-exporiginalids false -exppubreports 

-split -dir .\ 

-exptype READABLE_YAML,APPLICATION_SOURCE



Code

• APEX


• packages, views, triggers


• File based development



Code

• APEX


• packages, views, triggers


• tables, indexes

lb generate-object -obt table -obn <tablename>

 
 
(update the controller.xml)



COMMIT



COMMIT only REAL changes

• pick your APEX changes





COMMIT only REAL changes

• pick your APEX changes


• styling is irrelevant


• auto format - for changed objects


• (re)apply formatted code





COMMIT only REAL changes

• pick your APEX changes


• styling is irrelevant


• auto format - for changed objects


• (re)apply formatted code


• auto generate changesets 


• for changed objects only





COMMIT only REAL changes

• pick your APEX changes


• styling is irrelevant


• auto format - for changed objects


• (re)apply formatted code


• push changes





GITLAB 
RUNNER





MERGE 
REQUEST



MERGE REQUEST - pipeline

• run unit test


• code review


• approve







MERGE





RELEASE



RELEASE

• Tag a commit 


• Download the repo from that point in time


• Use Liquibase for deployment



GitLab central repo

GitLab local repo

clone / pull

branch

branch commit

push

branch

merge

Autoformat

Generate Liquibase XML files for changed objects

Run unit test

Auto deploy using Liquibase



TAKE 
AWAYS



TAKE AWAYS

• Learn / use Git


• Learn / use SQLcl - Liquibase


• Automate & script


• Easy to use 



@RoelH

roel@apexconsulting.nl

mailto:roel@apexconsulting.nl

