
There is more to
blockchain
than

Tomislav Kušanić

1

2

About me

• Tomislav Kušanić
• tomislav.kusanic@in2.hr

• 15 years of experience with Oracle (E-Business Suite, Apex, BI)

3

mailto:tomislav.kusanic@in2.hr

Todays topic

• Introduction to Blockchain

• Blockchain tables in Oracle DB

4

Introduction to Blockchain

• Digital ledger shared accross network of computers

• Anything of value can be tracked and traded on blockchain network

• Each block in chain has unique digital signature

• Blocks are connected in chronological order to form a chain

• Resistant to tampering and hacking

Digital ledger shared accross network of computers
all participants have access to digital ledger
immutable record of all transactions
no need for central authority
transactions recorded only once

No need for central authority
Anything of value can be tracked and traded on blockchain network
Each block in chain has unique digital signature
Blocks are connected in chronological order to form a chain
Resistant to tampering and hacking

5

Introduction to Blockchain

• Immutable records
• no participant can change or tamper with transaction in ledger

• original transaction cannot be changed or deleted

• correction is done with correcting transaction

6

Introduction to Blockchain

• Smart contracts
• simple programs stored on blockchain

• run when conditions are met

• automate execution of an aggreement

• participants are immediately certain of outcome

• no intermediary involved or time lost

• can automate workflow by triggering next action

7

Use Cases

1. Decentralized record keeping/audit trail

2. Supply chain provenance & authenticity accross trading community

3. Multiparty exchange transactions:
1. payments

2. funds-transfer

3. asset tokenization

4. Digital identity or certifications across multiple issuers

5. Business transactions based on multi party object/document matching &
reconciliation

6. Multi-brand loyalty systems

8

Blockchain in Oracle Database

• Blockchain tables introduced in 21c

• Backported to 19c

• New functionality in 23c

9

Blockchain tables

• Insert only tables

• Organize rows into chains

• Each row chained to previous row in the chain

• Row tampering changes its hash value indicating data manipulation

• Optional user signatures

Insert only tables that organize rows into chains
Each row is chained to previous row in the chain using cryptographic hash
Row cryptographic hash is based on row data and hash of previous row
Tampering with a row changes its hash value, affecting the subsequent rows in the
chain indicating data manipulation
Optional user signatures can be added for enhanced fraud protection, requiring
digital certificates.

10

Blockchain tables

• Indexed and partitioned

• Controlled for dropping

• Rows can be selectively deleted or retained

• Used in transactions and queries alongside regular tables.

11

Blockchain tables

• Prevent unauthorized modification of data

• Insert-only

• Row retention period

Blockchain tables prevent unauthorized modification of data by insiders or hackers
with stolen insider credentials
Table is insert-only
Users cannot delete rows within the defined retention period

12

Blockchain tables

• Blockchain table definition cannot be changed

• Blockchain table conversion not permitted

• Table data in the database dictionary cannot be modified

Database does not allow users to change the blockchain table definition
Conversion between blockchain table and normal table is not permitted
Table data in the database dictionary cannot be modified

13

Blockchain tables

• BC table digest generated on request and signed

• Digest based on last row metadata columns

• Data modification results in a change of the digest value

Cryptographic digest of the blockchain table is generated on request and signed with
the database schema owner's private key
Digest is based on metadata columns for the last row of every chain in the table
Any data modification results in a change of the digest value

14

Blockchain tables

• Digest periodically calculated and stored

• Verifying digest for the range of rows between two timestamps

Cryptographic digest can be periodically calculated and stored in distributed safe
repositories
Verifying digest for the range of rows between two timestamps detects cover-ups of
unauthorized changes

15

Blockchain tables

• Prevents undetected, unauthorized modifications of data

• End users can sign new row

• Prevent impersonation

• Enables data integrity verification

Prevents undetected, unauthorized modifications of data using stolen end-user
credentials
End users can cryptographically sign new row and this confirms end user’s role in
inserting the record
Digital certificate and private key prevent impersonation and verify data integrity

16

Blockchain tables

• Blockchain technology is directly integrated into Oracle database

• Utilizes advanced Oracle database functionality

• Minimal changes to existing applications

• No new infrastructure requirements

• Mix blockchain and regular tables in queries and transactions

Blockchain technology is directly integrated into Oracle database for enhanced data
protection
Utilizes advanced Oracle database functionality, including analytics on
cryptographically secured data
Minimal changes to existing applications and no new infrastructure requirements
Enables users to mix blockchain and regular tables in queries and transactions

17

Chaining rows

• Row chained to previous row in the chain

• Chain verifiable by all participants

• 32 chains

• Chain unique identifier - instance ID + chain ID

A row in a blockchain table is chained to the previous row in the chain
The chain of rows is verifiable by all participants
Each blockchain table contains 32 chains from 0 to 31
Chains are identified by a unique combination of instance ID and chain ID

18

Chaining rows

• User columns and hidden columns

• Unique sequence number within the chain

• Each row linked to the previous row

Rows consist of user columns and hidden columns
Upon insertion, a row is assigned a unique sequence number within the chain 1
higher than the previous row’s sequence number
Each row is linked to the previous row

19

Chaining rows

20

Chaining rows

• Row unique identifier - instance ID + chain ID + sequence number

• SHA-512 hash value computed

• Hash0

Rows can be uniquely identified using instance ID, chain ID, and sequence number
When a row is inserted, a SHA-512 hash value is computed based on row data and
the previous row's hash value
The first row uses a fixed, constant value (Hash0) as the previous row's hash

21

Chaining rows

• Single transaction insert into multiple blockchain tables

• Single transaction insert to the same chain

• Chain row position determined by order of insertion

• Automatic chain selection upon commit

A single transaction can insert rows into multiple blockchain tables
Rows inserted by a single transaction are added to the same chain
The position of rows within the chain corresponds to the order of their insertion into
the blockchain table
The database automatically selects the chain for the rows when the transaction
commits

22

Chaining rows

• Parallel transaction row chain position determined by transaction
commit order

• Rows linked to the blockchain upon transaction commit

• Higher commit latency

• Avoid inserting very large number of rows in a single transaction

When multiple users insert rows simultaneously into the same chain, the order of
adding the rows depends on the transaction commit order
Rows are linked to the blockchain upon transaction commit
Inserting a large number of rows in a single transaction results in higher commit
latency
It is recommended to avoid inserting a very large number of rows in a single
transaction

23

Restrictions on blockchain tables

• Following data types not supported:
• ROWID

• LONG

• Object type

• TIMESTAMP WITH TIME ZONE

• TIMESTAMP WITH LOCAL TIME ZONE

• BFILE

• XMLType

24

Restrictions on blockchain tables

• Following operations not supported:
• creating blockchain tables in CDB root
• updating and merging rows
• adding, dropping and renaming columns
• truncating the table
• dropping partitions
• inserting data using parallel DML
• before row triggers for update operations
• creating ADO, VPD and OLS policies
• online redefinition
• converting a regular table to blockchain table and viceversa

25

Creating blockchain tables

CREATE BLOCKCHAIN TABLE transaction_ledger

(transaction_id NUMBER

,transaction_date DATE

,transaction_user VARCHAR2(50))

NO DROP UNTIL 8 DAYS IDLE

NO DELETE UNTIL 356 DAYS AFTER INSERT

HASHING USING "SHA2_512" VERSION "V1";

26

Creating blockchain tables

CREATE BLOCKCHAIN TABLE transaction_ledger_partitioned
(transaction_id NUMBER
,transaction_date DATE
,transaction_user VARCHAR2(50))
NO DROP UNTIL 16 DAYS IDLE
NO DELETE UNTIL 356 DAYS AFTER INSERT
HASHING USING "SHA2_512" VERSION "V1"
PARTITION BY RANGE(transaction_date)
(PARTITION p0 VALUES LESS THAN (TO_DATE('31.03.2023','DD.MM.YYYY'))
,PARTITION p1 VALUES LESS THAN (TO_DATE('30.06.2023','DD.MM.YYYY'))
,PARTITION p2 VALUES LESS THAN (TO_DATE('30.09.2023','DD.MM.YYYY'))
,PARTITION p3 VALUES LESS THAN (TO_DATE('31.12.2023','DD.MM.YYYY'))
);

27

Creating blockchain tables

select *

from all_tab_columns

where table_name = 'TRANSACTION_LEDGER';

28

Hidden columns
Column Name Data Type Description

ORABCTAB_INST_ID$ NUMBER (22) Instance ID of the database instance into which the row is

inserted.

ORABCTAB_CHAIN_ID$ NUMBER (22) Chain ID of the chain, in the database instance, into which

the row is inserted. Valid values for chain ID are 0 through

31.

ORABCTAB_SEQ_NUM$ NUMBER(22) Sequence number of the row on the chain. Each row

inserted into a chain of a blockchain table is assigned a

unique sequence number that starts with 1. The sequence

number of a row is 1 higher than the sequence number of

the previous row in the chain. Missing rows can be detected

using this column.

The combination of instance ID, chain ID, and sequence

number uniquely identifies a row in the blockchain table.

ORABCTAB_CREATION_TIME$ TIMESTAMP WITH TIME ZONE Time, in UTC format, when a row is created.

ORABCTAB_USER_NUMBER$ NUMBER (22) User ID of the database user who inserted the row.

ORABCTAB_HASH$ RAW(2000) Hash value of the row. The hash value is computed based

on the row content of the row and the hash value of the

previous row in the chain.

ORABCTAB_SIGNATURE$ RAW(2000) User signature of the row. The signature is computed using

the hash value of the row.

ORABCTAB_SIGNATURE_ALG$ NUMBER(22) Signature algorithm used to produce the user signature of a

signed row.

ORABCTAB_SIGNATURE_CERT$ RAW(16) GUID of the certificate associated with the signature on a

signed row.

ORABCTAB_SPARE$ RAW(2000) This column is reserved for future use.

Each row in blockchain table contains hidden columns that are populated by the
database when inserted row is commited

29

Altering blockchain tables

• It is only possible to increase retention period of table and rows:

alter table transaction_ledger no drop until 16 days idle;

alter table transaction_ledger_partitioned

no delete until 712 days after insert locked;

30

Viewing blockchain tables

select *

from user_blockchain_tables;

31

Inserting into blockchain tables

insert into transaction_ledger

(transaction_id

,transaction_date

,transaction_user)

values

(1

,sysdate

,'test_user'

);

32

Querying data from blockchain tables

select *

from transaction_ledger;

33

Querying data from blockchain tables

select transaction_id
, ORABCTAB_INST_ID$
, ORABCTAB_CHAIN_ID$
, ORABCTAB_SEQ_NUM$
, ORABCTAB_CREATION_TIME$
, ORABCTAB_USER_NUMBER$
, ORABCTAB_HASH$
, ORABCTAB_SIGNATURE$
, ORABCTAB_SIGNATURE_ALG$
, ORABCTAB_SIGNATURE_CERT$
, ORABCTAB_SPARE$
from transaction_ledger;

commit;

34

Deleting data from blockchain tables

• Only rows outside retention period can be deleted:

delete transaction_ledger

where transaction_id = 4;

SQL Error: ORA-05715: operation not allowed on the blockchain or immutable table

05715. 0000 - "operation not allowed on the blockchain or immutable table"

*Cause: The table was insert-only table and, therefore, could not be

updated or deleted.

35

Deleting data from blockchain tables
DECLARE

l_num_rows NUMBER;
BEGIN

DBMS_BLOCKCHAIN_TABLE.DELETE_EXPIRED_ROWS
(schema_name => 'HROUG2023'
,table_name => 'TRANSACTION_LEDGER'
,before_timestamp => TO_DATE('31.03.2023','DD.MM.YYYY')
,number_of_rows_deleted => l_num_rows);

DBMS_OUTPUT.PUT_LINE('Number of rows deleted = ' || l_num_rows);
END;

PL/SQL procedure successfully completed.
Number of rows deleted = 0

36

Dropping blockchain tables

• Can be dropped if no rows or wasn’t modified within retention period

• Must be within user schema or user must have DROP ANY TABLE privilege

• Use Purge option

drop table transaction_ledger_partitioned purge;

Blockchain table can be dropped if it has no rows or it wasn’t modified within
retention period
Must be within user schema or user must have DROP ANY TABLE privilege
It is recommended to use Purge option when dropping blockchain table

37

Adding certificate

• X.509 digital certificate

• Add certificate to database as BLOB

• Stored certificate ID - sign and verifiy signed blockchain table row

• Multiple certificates

• Row can have only one signature

Obtain an X.509 digital certificate from a Certificate Authority (CA).
Add certificate to database as BLOB
Use stored certificate ID to sign and verifiy signed blockchain table row
Multiple certificates can be used to sign a row but each row can have only one
signature

38

Adding certificate

• Creating signing key:
openssl genrsa -out bc_signing_key.pem 2048

• Creating self-signing certificate:
openssl req -new -x509 -outform pem -sha512 -days 3650 \

-nodes \

-out bc_signing_certificate.pem \

-key bc_signing_key.pem \

-subj
"/C=HR/ST=Zagreb/L=Somwhere/O=HROUG2023/OU=IN2/CN=Tomislav
/emailAddress=tomislavku@in2.hr"

39

Adding certificate
DECLARE

file BFILE;

buffer BLOB;

amount NUMBER := 32767;

cert_id RAW(16);

BEGIN

file := BFILENAME('BC_CERT_DIR', 'bc_signing_certificate.pem');

DBMS_LOB.FILEOPEN(file);

DBMS_LOB.READ(file, amount, 1, buffer);

DBMS_LOB.FILECLOSE(file);

DBMS_USER_CERTS.ADD_CERTIFICATE(buffer, cert_id);

DBMS_OUTPUT.PUT_LINE('Certificate ID = ' || cert_id);

END;

Certificate GUID = 02A55DA59D470E5EE0630100007FF6E2

40

Adding certificate

• Query certificates from data dictionary views:
• DBA_CERTIFICATES

• CDB_CERTIFICATES

• USER_CERTIFICATES

We can query informations about existing certificates from data dictionary views

41

Deleting certificate
declare

certificate_guid RAW(16):=02A73D7872B912B0E0630100007F3E27';

begin

DBMS_USER_CERTS.DROP_CERTIFICATE(certificate_guid);

end;

42

Adding signature to blockchain table row

• Signing a row is optional

• Additional security against tampering

• Oracle database verifies:
• that the current user owns the row being updated
• that the hash provided matches stored hash value of the row.

• Digital certificate signs blockchain table row

• Supported signature algorithms:
• SIGN_ALGO_RSA_SHA2_256
• SIGN_ALGO_RSA_SHA2_384
• SIGN_ALGO_RSA_SHA2_512

Signing a row with user signature is optional
Provides additional security against tampering
Oracle database verifies:

that the current user owns the row being updated
that the hash provided matches stored hash value of the row.

Digital certificate is used when adding a signature to a blockchain table row
Supported signature algorithms:

SIGN_ALGO_RSA_SHA2_256
SIGN_ALGO_RSA_SHA2_384
SIGN_ALGO_RSA_SHA2_512

43

Adding signature to blockchain table row

• To add a signature to a blockchain table row:
• existing signature of that row must be NULL

• INSERT privilege on the blockchain table is needed

44

Adding signature to blockchain table row
select transaction_id

, ORABCTAB_INST_ID$

, ORABCTAB_CHAIN_ID$

, ORABCTAB_SEQ_NUM$

, ORABCTAB_SIGNATURE$

, ORABCTAB_SIGNATURE_ALG$

, ORABCTAB_SIGNATURE_CERT$

, ORABCTAB_SPARE$

from transaction_ledger;

45

Adding signature to blockchain table row
declare

l_row_data blob;
l_buffer raw(4000);
l_inst_id binary_integer;
l_chain_id binary_integer;
l_seq_num binary_integer;
l_row_len binary_integer;
l_file utl_file.file_type;

begin
select orabctab_inst_id$,orabctab_chain_id$,orabctab_seq_num$
into l_inst_id,l_chain_id,l_seq_num
from transaction_ledger where transaction_id = 2;
dbms_blockchain_table.get_bytes_for_row_signature(schema_name => 'HROUG2023’

,table_name => 'TRANSACTION_LEDGER’
,instance_id => l_inst_id
,chain_id => l_chain_id
,sequence_id => l_seq_num
,data_format => 1
,row_data => l_row_data);

l_row_len := dbms_lob.getlength(l_row_data);
dbms_lob.read(l_row_data, l_row_len, 1, l_buffer);
l_file := utl_file.fopen('BC_CERT_DIR','transaction2.dat','wb', 32767);
utl_file.put_raw(l_file, l_buffer, true);
utl_file.fclose(l_file);
end;

46

Adding signature to blockchain table row

Signing row digest:

openssl dgst -sha512 \

-sign bc_signing_key.pem \

-out transaction2.sha512 \

transaction2.dat

47

Adding signature to blockchain table row
DECLARE
l_inst_id binary_integer;
l_chain_id binary_integer;
l_sequence_no binary_integer;
l_file BFILE;
l_source_off integer := 1;
l_destination_off integer := 1;
l_signature blob;
l_cert_guid RAW (16) := HEXTORAW('02A55DA59D470E5EE0630100007FF6E2');
BEGIN
select orabctab_inst_id$,orabctab_chain_id$,orabctab_seq_num$
into l_inst_id,l_chain_id,l_sequence_no
from transaction_ledger where transaction_id = 2;
l_file := bfilename('BC_CERT_DIR', 'transaction2.sha512');
dbms_lob.createtemporary(l_signature, false);
dbms_lob.fileopen(l_file);
dbms_lob.loadblobfromfile(l_signature,l_file,dbms_lob.getlength(l_file),l_d
estination_off,l_source_off);
dbms_lob.fileclose(l_file);

48

Adding signature to blockchain table row
dbms_blockchain_table.sign_row(schema_name => 'HROUG2023'

,table_name => 'TRANSACTION_LEDGER'

,instance_id => l_inst_id

,chain_id => l_chain_id

,sequence_id => l_sequence_no

,hash => NULL

,signature => l_signature

,certificate_guid => l_cert_guid

,signature_algo => DBMS_BLOCKCHAIN_TABLE.SIGN_ALGO_RSA_SHA2_512);

END;

49

Adding signature to blockchain table row

50

Generating signed digest for blockchain table

• Signed digest - metadata + last row data in each chain of a table at certain
point in time

• Signature based on contents of the signed digest

• Signature using private key and certificate

• Signature and signed digest stored in repository

Signed digest consist of metadata and data about the last row in each chain of a table
at certain point in time
Signature is based on contents of the signed digest
Signature is using private key and certificate of the blockchain table owner
Signature and signed digest generated at various times should be stored in repository

51

Generating signed digest for blockchain table

• Prerequisites:
• certificate added to database

• PKI private key and certificate of blockchain table owner stored in a wallet:
• For PDB: WALLET_ROOT/pdb_guid/bctable/

• For non-CDB: WALLET_ROOT/bctable/

Prerequisites:
certificate of blockchain table owner must be added to database
PKI private key and certificate of blockchain table owner must be stored in a
wallet:

For PDB: WALLET_ROOT/pdb_guid/bctable/
For non-CDB: WALLET_ROOT/bctable/

52

Generating signed digest for blockchain table

Set WALLET_ROOT (as CDB SYSDBA):
ALTER SYSTEM SET WALLET_ROOT =

'/opt/oracle/product/23c/dbhomeFree/admin/FREE' SCOPE=SPFILE;

Create folder structure under WALLET_ROOT:

SELECT pdb_name, guid FROM dba_pdbs;

PDB GUID: F87259FB7D3C3519E0530100007F5D4C

cd /opt/oracle/product/23c/dbhomeFree/admin/FREE/

mkdir F87259FB7D3C3519E0530100007F5D4C/bctable

53

Generating signed digest for blockchain table

Creating wallet:
orapki wallet create -wallet

/opt/oracle/product/23c/dbhomeFree/admin/FREE/F87259FB7D3C3519E0530100007

F5D4C/bctable/ -auto_login_only

Package signed cerificate and key:
openssl pkcs12 -export -in bc_signing_certificate.pem \

-inkey bc_signing_key.pem \

-out private_key_bct_owner.p12 -passout pass:"oracle"

54

Generating signed digest for blockchain table

Adding key to wallet:
orapki wallet import_pkcs12 \

-wallet

/opt/oracle/product/23c/dbhomeFree/admin/FREE/F87259FB7D3C3519E053010000

7F5D4C/bctable/ \

-auto_login_only -pkcs12file

/home/oracle/my_wallet/private_key_bct_owner.p12 \

-pkcs12pwd "oracle"

55

Generating signed digest for blockchain table
DECLARE
l_signed_bytes BLOB;
l_signed_row_array SYS.ORABCTAB_ROW_ARRAY_T;
l_certificate_guid RAW(2000) := '02A55DA59D470E5EE0630100007FF6E2';
l_signature RAW(2000);
BEGIN
dbms_lob.createtemporary(l_signed_bytes, false);
l_signature := DBMS_BLOCKCHAIN_TABLE.GET_SIGNED_BLOCKCHAIN_DIGEST
(schema_name => 'HROUG2023'
,table_name => 'TRANSACTION_LEDGER'
,signed_bytes => l_signed_bytes
,signed_rows_indexes => l_signed_row_array
,schema_certificate_guid => l_certificate_guid
,signature_algo => dbms_blockchain_table.SIGN_ALGO_RSA_SHA2_512);
insert into bc_signed_digests (creation_date,signed_digest,signed_bytes)
values(sysdate,to_blob(l_signature),l_signed_bytes);

DBMS_OUTPUT.PUT_LINE('Certificate GUID = ' || l_certificate_guid);
DBMS_OUTPUT.PUT_LINE('Signature length = ' || UTL_RAW.LENGTH(l_signature));
DBMS_OUTPUT.PUT_LINE('Number of chains = ' || l_signed_row_array.count);
DBMS_OUTPUT.PUT_LINE('Signature content buffer length = ' ||
DBMS_LOB.GETLENGTH(l_signed_bytes));
END;

56

Verifying the Integrity of Blockchain Tables

1. DBMS_BLOCKCHAIN_TABLE.VERIFY_ROWS - verify links

2. DBMS_BLOCKCHAIN_TABLE.GET_SIGNED_BLOCKCHAIN_DIGEST at time T1

3. DBMS_BLOCKCHAIN_TABLE.GET_SIGNED_BLOCKCHAIN_DIGEST at time T2

4. DBMS_BLOCKCHAIN_TABLE.VERIFY_TABLE_BLOCKCHAIN - verify integrity between T1
and T2

Repeat steps 2 through 4 at different time periods

1. Verify the links between all the chains
in the blockchain table using
DBMS_BLOCKCHAIN_TABLE.VERIFY_RO
WS procedure.

If row contains a user signature, the
row signature is also verified
2. Generate a signature and signed digest

for the blockchain table using
DBMS_BLOCKCHAIN_TABLE.GET_SIGN

57

ED_BLOCKCHAIN_DIGEST function at
time T1.
Generated details and generation date and time should be stored in
repository that must be outside the database that stores the blockchain
table, e.g. another relational database

2. Generate a signature and signed digest
for the blockchain table using
DBMS_BLOCKCHAIN_TABLE.GET_SIGN
ED_BLOCKCHAIN_DIGEST function at
time T2. Generated details and
generation date and time should be
stored in repository.

3. Verify integrity of rows that were
created between T1 and T2 using
DBMS_BLOCKCHAIN_TABLE.VERIFY_TA
BLE_BLOCKCHAIN procedure. Inputs
for this procedure are signed digests
generated at T1 and T2.

Steps 2 through 4 should be repeated at
different time periods, to verify the
integrity of rows inserted between
different time periods.

57

Verifying Rows

DECLARE
l_rows_verified NUMBER;

BEGIN
DBMS_BLOCKCHAIN_TABLE.VERIFY_ROWS
(schema_name => 'HROUG2023'
,table_name => 'TRANSACTION_LEDGER'
,low_timestamp => NULL
,high_timestamp => NULL
,instance_id => 1
,chain_id => NULL
,number_of_rows_verified => l_rows_verified
,verify_signature => TRUE);
dbms_output.put_line('Number of rows verified in instance id 1 = ' ||
l_rows_verified);

END;

Number of rows verified in instance id 1 = 5

58

Verifying Integrity of Rows

DECLARE

l_signature RAW(2000);

l_signed_row_array SYS.ORABCTAB_ROW_ARRAY_T;

l_signed_bytes1 BLOB;

l_certificate_guid RAW(2000) := '02A55DA59D470E5EE0630100007FF6E2';

l_signed_bytes2 BLOB;

l_rows_verified NUMBER;

BEGIN

SELECT signed_bytes INTO l_signed_bytes1 FROM bc_signed_digests WHERE trunc(creation_date)

= trunc(SYSDATE-1);

l_signature := DBMS_BLOCKCHAIN_TABLE.GET_SIGNED_BLOCKCHAIN_DIGEST

(schema_name => 'HROUG2023'

,table_name => 'TRANSACTION_LEDGER'

,signed_bytes => l_signed_bytes2

,signed_rows_indexes => l_signed_row_array

,schema_certificate_guid => l_certificate_guid

,signature_algo => dbms_blockchain_table.SIGN_ALGO_RSA_SHA2_512);

59

Verifying Integrity of Rows

DBMS_BLOCKCHAIN_TABLE.VERIFY_TABLE_BLOCKCHAIN

(signed_bytes_latest => l_signed_bytes2

,signed_bytes_previous => l_signed_bytes1

,number_of_rows_verified => l_rows_verified);

dbms_output.put_line('Rows verified = ' || l_rows_verified);

END;

Rows verified = 5

60

If you want to learn more

• https://docs.oracle.com/en/database/oracle/oracle-
database/23/admin/managing-tables.html#GUID-E7151628-AF04-
48D4-9CB4-F72417AFC391

• https://docs.oracle.com/en/database/oracle/oracle-
database/23/arpls/dbms_blockchain_table.html#GUID-8B000001-
AE8B-42EA-8BF3-E590BCBA6657

• https://apexapps.oracle.com/pls/apex/r/dbpm/livelabs/view-
workshop?wid=875&p180_gb_clicked=Y&session=105569203428298

61

https://docs.oracle.com/en/database/oracle/oracle-database/23/admin/managing-tables.html#GUID-E7151628-AF04-48D4-9CB4-F72417AFC391
https://docs.oracle.com/en/database/oracle/oracle-database/23/admin/managing-tables.html#GUID-E7151628-AF04-48D4-9CB4-F72417AFC391
https://docs.oracle.com/en/database/oracle/oracle-database/23/admin/managing-tables.html#GUID-E7151628-AF04-48D4-9CB4-F72417AFC391
https://docs.oracle.com/en/database/oracle/oracle-database/23/arpls/dbms_blockchain_table.html#GUID-8B000001-AE8B-42EA-8BF3-E590BCBA6657
https://docs.oracle.com/en/database/oracle/oracle-database/23/arpls/dbms_blockchain_table.html#GUID-8B000001-AE8B-42EA-8BF3-E590BCBA6657
https://docs.oracle.com/en/database/oracle/oracle-database/23/arpls/dbms_blockchain_table.html#GUID-8B000001-AE8B-42EA-8BF3-E590BCBA6657
https://apexapps.oracle.com/pls/apex/r/dbpm/livelabs/view-workshop?wid=875&p180_gb_clicked=Y&session=105569203428298
https://apexapps.oracle.com/pls/apex/r/dbpm/livelabs/view-workshop?wid=875&p180_gb_clicked=Y&session=105569203428298

If you want to learn more

• https://www.oracle.com/blockchain/#blockchain-platform-tab

• https://ec.europa.eu/digital-building-blocks/wikis/display/EBSI/Home

• https://www.hyperledger.org/

• https://101blockchains.com/enterprise-blockchain-framework/

62

https://ec.europa.eu/digital-building-blocks/wikis/display/EBSI/Home
https://ec.europa.eu/digital-building-blocks/wikis/display/EBSI/Home
https://www.hyperledger.org/
https://101blockchains.com/enterprise-blockchain-framework/

63

	Slide 1: There is more to blockchain than
	Slide 2
	Slide 3: About me
	Slide 4: Todays topic
	Slide 5: Introduction to Blockchain
	Slide 6: Introduction to Blockchain
	Slide 7: Introduction to Blockchain
	Slide 8: Use Cases
	Slide 9: Blockchain in Oracle Database
	Slide 10: Blockchain tables
	Slide 11: Blockchain tables
	Slide 12: Blockchain tables
	Slide 13: Blockchain tables
	Slide 14: Blockchain tables
	Slide 15: Blockchain tables
	Slide 16: Blockchain tables
	Slide 17: Blockchain tables
	Slide 18: Chaining rows
	Slide 19: Chaining rows
	Slide 20: Chaining rows
	Slide 21: Chaining rows
	Slide 22: Chaining rows
	Slide 23: Chaining rows
	Slide 24: Restrictions on blockchain tables
	Slide 25: Restrictions on blockchain tables
	Slide 26: Creating blockchain tables
	Slide 27: Creating blockchain tables
	Slide 28: Creating blockchain tables
	Slide 29: Hidden columns
	Slide 30: Altering blockchain tables
	Slide 31: Viewing blockchain tables
	Slide 32: Inserting into blockchain tables
	Slide 33: Querying data from blockchain tables
	Slide 34: Querying data from blockchain tables
	Slide 35: Deleting data from blockchain tables
	Slide 36: Deleting data from blockchain tables
	Slide 37: Dropping blockchain tables
	Slide 38: Adding certificate
	Slide 39: Adding certificate
	Slide 40: Adding certificate
	Slide 41: Adding certificate
	Slide 42: Deleting certificate
	Slide 43: Adding signature to blockchain table row
	Slide 44: Adding signature to blockchain table row
	Slide 45: Adding signature to blockchain table row
	Slide 46: Adding signature to blockchain table row
	Slide 47: Adding signature to blockchain table row
	Slide 48: Adding signature to blockchain table row
	Slide 49: Adding signature to blockchain table row
	Slide 50: Adding signature to blockchain table row
	Slide 51: Generating signed digest for blockchain table
	Slide 52: Generating signed digest for blockchain table
	Slide 53: Generating signed digest for blockchain table
	Slide 54: Generating signed digest for blockchain table
	Slide 55: Generating signed digest for blockchain table
	Slide 56: Generating signed digest for blockchain table
	Slide 57: Verifying the Integrity of Blockchain Tables
	Slide 58: Verifying Rows
	Slide 59: Verifying Integrity of Rows
	Slide 60: Verifying Integrity of Rows
	Slide 61: If you want to learn more
	Slide 62: If you want to learn more
	Slide 63

