
Search Indexes and
Ubiquitous Search in 23c

Presented on 20th October 2023
at

HrOUG 2023
Rovinj, Croatia

by
Niall Mc Phillips - Long Acre sàrl

niall.mcphillips@longacre.ch
@Niall_McP

About me: Niall Mc Phillips

Owner - Long Acre sàrl

Irish 🇮🇪 / 🇨🇭 Swiss Living in Geneva, Switzerland.

•
• Oracle Developer and DBA for >30 years
• Developing web applications with Oracle DB since 1995
• Developing with APEX since 2005 (HTML DB 1.6)
• Organizer of the Swiss APEX Meetup group

@Niall_McP
niall.mcphillips@longacre.ch

3 membership tiers

Connect: @oracleaceFacebook.com/OracleACEsaceprogram_ww@oracle.com

500+ technical experts
helping peers globally

The Oracle ACE Program recognizes and
rewards community members for their
technical and community contributions to the
Oracle community

Nominate
yourself or someone you know:

ace.oracle.com/nominate
For more details on Oracle ACE Program:
ace.oracle.com

http://acenomination.oracle.com/
bit.ly/OracleACEProgram

Created by the community, to support the community

Sharing of reliable knowledge
Supporting the various user groups and individuals

https://sym42.org/@sym_42

https://sym42.org/

Where do Search Indexes come from?

Where do Search Indexes come from?
• Oracle8 (1997) - Oracle ConText

• Oracle8i (1999) - Oracle Intermedia Text.

• Oracle9i (2001) - Oracle Text

• Oracle23c (2023) - Search Indexes

• An integral part of all Oracle database editions

Search Indexes - Built on a rock-solid foundation

Using Search Indexes

• really fast and quite easy to start using
• just create an index and start searching
• index varchar2, XML, JSON, clobs and

blobs (like pdfs)
• uses the “contains” clause for querying
• allows AND/OR and more complex logic
• + many more advanced features…

Searching with “like”
This is the basic “naïve” textual search that can
work for very small datasets.
• it will not use an index if there is a wildcard

at the start of the search string
where mytext like ‘%dog%’

• it is case-sensitive
• where lower(mytext) like ‘%dog%’

Creating a simple Search Index

create search index indexname
on tablename (columnname);

Creating a simple Search Index - examples
create search index si_judgments on judgments(description);

Index SI_JUDGMENTS created.

create search index si_hist_events on hist_events (description);

Index SI_HIST_EVENTS created.

Searching with contains

select * from tablename
where

contains(searchcolumn,'searchtext') > 0;

Scoring search results
• The score of a search result gives an idea

of the relevance of the result. High score
indicates a higher relevance.

• Scores are always in the 1 to 100 range

• Scores have absolutely no meaning outside
of their own query and cannot be compared
between different queries, sub-queries or
datasets.

Scoring search results - syntax

select score(1), t.* from tablename t

where

contains(searchcolumn,‘searchtext’,1) > 0

order by 1 desc;

Note that the (1) in score(1) matches the ,1) in
the contains clause

Cloud DEMO on Autonomous DB – Basic
Searches

Oracle Text operator grammar and syntax

Searching with AND and OR operators

Searching with NOT and ACCUM operators

Principal operators

• AND &

• OR |

• NOT ˜

Some other operators
EQUIValence (=) NEAR (;)

MINUS (-) stem ($)

Fuzzy soundex (!)

and many more…

full details in Oracle Text Reference at:

https://docs.oracle.com/en/database/oracle/oracle-database/23/ccref/index.html#Oracle%C2%AE-Text

Demo

• Examples of searches with
CONTAINS

Escaping terms entered
search for

• Africa and Near East

• “Near” is also an operator so we escape the

search words using curly brackets {}

{Africa}&{Near East}

Preparing text for search
• It can quickly become quite complex to

parse and prepare the search text that users

enter

• Normally some type of pre-processing is

required for real-world scenarios

Pre-processing user-input text for Google-like
searches

Baseline principles:

• End-users should not need to know or understand Search
Index grammar

• Everyone wants their searches to work “just like Google”

Pre-processing user-input text for Google-like
searches

One approach to pre-processing
FOR i IN 1..50 LOOP -- try to get rid of multiple spaces

v_text := replace(v_text,' ',' ');

END LOOP;

v_text := replace(v_text,'*','%'); -- wildcard chars

v_text := replace(v_text,'?','_'); -- wildcard chars

v_text := replace(v_text,'"',null);

v_text := replace(v_text,'''',null);

v_text := replace(v_text,',',null);

v_text := replace(v_text,';',null);

v_text := replace(v_text,'.',null);

v_text := replace(v_text,'+','&');

v_text := replace(v_text,' &','&');

v_text := replace(v_text,'& ','&’);

etc...

Pre-processing user-input text for Google-like
searches

• While researching for this presentation I
found a great PL/SQL package* written and
made freely available by Roger Ford of
Oracle.

PARSER package:
https://blogs.oracle.com/searchtech/oracle-text-query-

parser

*I really wish I had found this a few years ago - I would have saved so much time
that I spent writing my own ;)

https://blogs.oracle.com/searchtech/oracle-text-query-parser
https://blogs.oracle.com/searchtech/oracle-text-query-parser

The PARSER package
We will use the
parser.simpleSearch function to transform
“Google-like” syntax into Oracle Text syntax.

e.g. "Ad Hoc Committee” becomes
({Ad Hoc Committee})

PARSER examples
assessment damages becomes
({assessment},{damages})

+assessment +damages becomes
({assessment}&{damages})

+assessment -damages becomes
({assessment}) ~{damages}

Stoplists

Stoplists are lists containing words “stopwords” that should be
ignored when searching.

i.e. frequently occurring words such as ”the”, “also”, “their”, …

Stoplists - First create a Lexer

Create a lexer called “HrOUG_lexer” of type basic_lexer:

ctx_ddl.create_preference('HrOUG_lexer',
'basic_lexer’);

Stoplists - Creating a stoplist

You can create your own stoplist and add any
words that are appropriate for your application.

Create a stoplist called “hrougstoplist”:
ctx_ddl.create_stoplist(‘hrougstoplist','BASIC_STOPLIST’);

Stoplists - Adding words to a stoplist

ctx_ddl.add_stopword('hrougstoplist’, ‘HrOUG');
ctx_ddl.add_stopword('hrougstoplist', 'APEX');
ctx_ddl.add_stopword('hrougstoplist’, 'Database');
ctx_ddl.add_stopword('hrougstoplist’, 'Oracle’);

Some stopword sources:
https://github.com/stopwords-iso
http://www.stopwords.org/

https://github.com/stopwords-iso
http://www.stopwords.org/

Stoplists - Create an index using the stoplist

create search index ind_decisions$1 on decisions(decision)
parameters ('lexer hroug_lexer stoplist hroug');

Stoplists - cloud demo

Demonstrate management of
stopwords for a stoplist.

Indexing BLOB columns

ext

Sample table JUDGMENT_DOCUMENTS

• Blob column FILE_CONTENT contains PDF files for each
judgment

Indexing PDF files stored in BLOB columns

create search index txt_judgment_documents$1
on judgment_documents(file_content);

Searching the BLOB documents

• BLOB Searches are the same as with any other column

select score(1) as the_score,

j.* from judgments j

inner join judgment_documents jd on (jd.judgment_no = j.judgment_no)

where contains(jd.file_content,:P8_SEARCHTEXT_PROCESSED, 1) > 0

order by 1 desc;

Retrieving Snippets from PDF documents

Using the CTX_DOC package

CTX_DOC.SNIPPET(

index_name IN VARCHAR2,

textkey IN VARCHAR2,

text_query IN VARCHAR2,

starttag IN VARCHAR2 DEFAULT '’,

endtag IN VARCHAR2 DEFAULT '’,

entity_translation IN BOOLEAN DEFAULT TRUE,

separator IN VARCHAR2 DEFAULT '...’)

return varchar2;

Retrieving Snippets from PDF documents

CTX_DOC.SNIPPET(

index_name => ‘TXT_JUDGMENT_DOCUMENTS$3’,

textkey => jd.rowid,

text_query => :P8_SEARCHTEXT_PROCESSED);

Add the snippet to the query
select score(1) as the_score,

‘<h4>Judgment no.: '||to_char(j.judgment_no)||' - '

||to_char(j.publication_date,'YYYY-MM-DD’)

||'</h4>'

||'... '

ctx_doc.snippet(index_name => 'TXT_JUDGMENT_DOCUMENTS$3',

textkey => jd.rowid,

text_query => :P8_SEARCHTEXT_PROCESSED)

||' ...' as snippet

from judgments j

etc…

Advanced snippets in PL/SQL
For multiple snippets within a single result use CTX_DOC to retrieve an array

of snippets. Usually you will built a custom-fuction to return these in the
desired way.

a_snippets ctx_doc.highlight_tab; -- declaration

begin

ctx_doc.set_key_type (ctx_doc.type_rowid);

ctx_doc.highlight (index_name =>’TXT_JUDGMENT_DOCUMENTS$3’,

textkey => rec_loop.rid,

text_query => upper(trim(v_word)),

restab => a_snippets , -- snippets are placed here

plaintext => TRUE);

then loop through a_snippets to get all occurrences.

Cloud DEMO – Snippets as an APEX Classic
Report

23c Ubiquitous Search

23c - Ubiquitous Search

23c Ubiquitous Search

DBMS_SEARCH

23c Ubiquitous Search – Creating an index

First, we’ll create the index:

dbms_search.create_index('UB1SEARCH');

23c Ubiquitous Search – Adding Data Sources

Now, let’s add two completely unrelated data sources:

dbms_search.add_source('UB1SEARCH', 'JUDGMENTS’);

dbms_search.add_source('UB1SEARCH', 'HIST_EVENTS');

23c Ubiquitous Search – table created
SQL> desc ub1search

Name Null? Type
-------- -------- --------------
METADATA NOT NULL JSON
DATA JSON
OWNER VARCHAR2(128)
SOURCE VARCHAR2(128)
KEY VARCHAR2(1024)

23c Ubiquitous Search – table created
Let’s take a look at the metadata

select metadata from ub1search
where contains(data, 'observatory') > 0;

23c Ubiquitous Search – table created
Let’s take a look at the metadata

{"OWNER":"NIALL","SOURCE":"HIST_EVENTS","KEY":{"ID":10000}}

{"OWNER":"NIALL","SOURCE":"HIST_EVENTS","KEY":{"ID":10001}}

{"OWNER":"NIALL","SOURCE":"HIST_EVENTS","KEY":{"ID":10002}}

{"OWNER":"NIALL","SOURCE":"HIST_EVENTS","KEY":{"ID":10003}}

....

{"OWNER":"NIALL","SOURCE":"JUDGMENTS","KEY":{"JUDGMENT_NO":995}}

{"OWNER":"NIALL","SOURCE":"JUDGMENTS","KEY":{"JUDGMENT_NO":994}}

{"OWNER":"NIALL","SOURCE":"JUDGMENTS","KEY":{"JUDGMENT_NO":993}}

23c Ubiquitous Search – getting to the data
We can extract the keys using JSON_TABLE

...

from ub1search us

cross join json_table(us.metadata, '$.KEY[*]'

columns (judgment_no number path '$.JUDGMENT_NO',

hist_event_id number path '$.ID')) j

...

23c Ubiquitous Search – getting to the data
We can extract the keys using JSON_TABLE

...

from ub1search us

cross join json_table(us.metadata, '$.KEY[*]'

columns (judgment_no number path '$.JUDGMENT_NO',

hist_event_id number path '$.ID')) j

...

23c Ubiquitous Search – getting to the data
Join with the underlying tables...

...

from ub1search us

cross join json_table(us.metadata, '$.KEY[*]'

columns (judgment_no number path '$.JUDGMENT_NO',

hist_event_id number path '$.ID')) j
left outer join hist_events h on (h.id = j.hist_event_id)

left outer join judgments ju on (ju.judgment_no = j.judgment_no)

...

23c Ubiquitous Search – showing the data

Join with the underlying tables...
...

select case

when j.judgment_no is not null then 'Judgment'

else 'Historical Event'

end as result_type,

coalesce(j.judgment_no, j.hist_event_id) as theId,

coalesce(h.theDate, to_char(ju.publication_date,'YYYY-MM-DD')) as theDate,

coalesce(h.description, ju.short_summary_en, ju.decision_en) as theText,

us.data

from ub1search us

...

23c Ubiquitous Search – showing the data
Creating a view for other developers

create or replace view vw_ubsearch as

select case

when j.judgment_no is not null then 'Judgment'

else 'Historical Event'

end as result_type,

coalesce(j.judgment_no, j.hist_event_id) as theId,

coalesce(h.theDate, to_char(ju.publication_date,'YYYY-MM-DD')) as theDate,

coalesce(h.description, ju.short_summary_en, ju.decision_en) as theText,

us.data

from ub1search us

cross join json_table(us.metadata, '$.KEY[*]'

columns (judgment_no number path '$.JUDGMENT_NO',

hist_event_id number path '$.ID')) j

left outer join hist_events h on (h.id = j.hist_event_id)

left outer join judgments ju on (ju.judgment_no = j.judgment_no)

23c Ubiquitous Search – showing the data

Demo with APEX

